摘要

滚动轴承是旋转机械的重要部件之一,针对滚动轴承故障诊断问题,提出了一种多尺度排列熵(MPE)与粒子群优化(PSO)的支持向量机(SVM)相结合的算法。利用MPE方法得到轴承故障信号的故障特征,并将其作为特征向量输入PSO-SVM模型中,使用凯斯西储大学轴承故障数据进行验证,发现该方法可以有效进行滚动轴承的故障识别。同时将该方法与多尺度排列熵结合传统的SVM方法以及使用网格搜索优化的SVM方法所得故障分类结果进行比较,发现该方法在滚动轴承故障诊断的时效性以及准确率方面具有一定的优越性。