摘要

规划一条高时效且低代价的三维(3D)航行轨迹,成为目前无人机广泛应用亟须解决的问题。针对蚁群算法在航迹规划中出现的航迹长度和平滑性不足问题,通过改进蚁群系统中的节点移动规则、构造多重启发信息并结合粒子群优化算法的全局搜索能力,提出了蚁群粒子群融合算法。同时,就飞行航迹中出现的动态避障问题和目标点变化问题,提出了改进生物启发神经动力学模型算法,该算法针对3D静态最优航迹中出现的障碍物和目标点变化,实现了局部在线航迹调整。实验仿真结果表明,蚁群粒子群融合算法能在3D静态环境中规划出一条期望航迹。同时,改进生物启发神经动力学模型算法不仅能对突发障碍动态避障,还能对动态目标点变化实时跟踪。