摘要

为解决传统目标检测算法需要人工设定目标特征、使用滑动窗法判断目标可能区域耗时等问题,将基于区域推荐和深度卷积网络用于交通目标检测,直接从原始图像提取特征,免去了人工选取特征的环节;解决了滑动窗口法耗时的问题.首先采用Selective Search方法在源图像上生成大量的候选区域,以这些候选区域作为输入样本,训练深度卷积网络学习算法,自动进行特征提取,对每个候选区提取的特征采用SVM分类器进行分类,最后基于贪婪非极大值抑制方法精修候选框的位置.此算法通过matlab编程分别对单目标、多目标及多类交通目标进行检测实验,证明了所提方法的可行性和有效性.