摘要

传统特征选择方法选出的特征子集存在冗余,并且不具备较好的代表性。针对该问题,提出基于粗糙集与泛系等价算子的特征选择方法。利用基于最小词频的文档频提取初始特征,通过泛系等价算子对粗糙集进行扩展,并给出属性约简算法消除冗余,从而获得较具代表性的特征子集。实验结果表明,该方法具有较高的准确率和召回率。