摘要
近年来,我国卫星高光谱技术发展迅猛,高分五号、高分五号02星、资源一号02D星、资源一号02E星等相继发射为遥感领域带来了丰富的高光谱数据源。但高光谱卫星在成像过程中不可避免地会受到云及云阴影的影响,如何准确识别成为保障后续应用的关键,Fmask算法作为国内外诸多算法中的典型代表,已被Landsat和Sentinel业务化产品生产系统采用。Fmask算法作为国内外诸多算法中的典型代表,已被Landsat和Sentinel业务化产品生产系统采用。但该算法对于缺少热红外波段的数据精度偏低,例如对Sentinel-2数据的云和云阴影识别精度分别为84.5%和50%左右。鉴于此,本文通过在原有算法中优化云及云阴影识别算法结构、增加高亮地物识别辅助判据等改进手段,提出了一种适合高光谱卫星的Fmask改进算法,并在含有城区、山地、平原等三类不同下垫面场景的20景高分五号和资源一号高光谱影像中进行检验,结果表明:云识别的用户精度和生产者精度可达91.26%和99.97%,云阴影识别精度达到78.66%和79.41%,明显优于原始算法。本文算法对于高光谱数据的云及云阴影识别具有精度高、效果稳定和易于工程化实现的特点,可用于支撑国产高光谱卫星数据的业务化处理。
- 单位