摘要
目的:对纸质包装盒缺陷进行准确的识别与定位。方法:应用改进Faster R-CNN的网络模型自动对包装盒缺陷进行检测。对训练集图片进行数据增强并添加噪声,提升模型的训练精度和鲁棒性;将特征提取网络替换为ResNet50,并融合特征金字塔网络(FPN),提高模型多尺度检测的能力;使用K-means++对数据集中缺陷尺度进行聚类,优化锚框方案。结果:改进后的Faster R-CNN模型在测试集上的平均准确率(AP)达到93.9%,检测速度达到8.65帧/s。结论:应用改进的Faster R-CNN模型能够有效检测出包装盒缺陷并定位,可应用于包装盒缺陷的自动检测与分拣。
- 单位