摘要
城市道路交通事故频发,而事故数据存在明显不平衡,不同因素间的耦合作用对城市道路乘用车致命事故率分析造成极大挑战。为此提出了1种集成重采样、贝叶斯网络(Bayesian networks,BN)和关联规则(association rule method,ARM)的三阶段事故率分析方法。基于国家事故深度调查体系的1 105例城市道路乘用车事故数据,从驾驶人、车辆、道路、环境这4个方面选取16个潜在特征变量构建BN模型;鉴于数据不平衡时会导致BN模型性能下降的问题,提出在构建BN模型前利用合成少数类过采样技术(Synthetic Minority Over-sampling Technique,SMOTE)和聚类中心进行数据重采样,并比较分析各类采样技术下不同BN模型的综合性能;基于最优BN模型并结合ARM,推理不同影响因素及因素的耦合作用对致命事故率的影响。结果表明:重采样方法可以显著提升BN模型的综合性能,以及识别风险因素的能力。其中SMOTE采样技术结合GTT算法构建的BN模型的AUC最高,达0.793。此外,相较于原始不平衡数据构建的BN模型,经SMOTE采样后构建的BN模型多挖掘了6个风险因素;“机动二/三轮车”与“超速行驶”耦合时致命事故率最高,达80.4%。“机动二/三轮车”与“存在视野盲区”耦合时,致命事故率达77.4%;乘用车在四枝分叉口左转时,容易与汽车发生碰撞,但致命事故率低于20%。本方法能够降低数据不平衡对道路交通事故分析的影响,并实现风险因素的耦合作用分析,进而预防和降低城市道路致命事故的发生。
-
单位西华大学; 四川三河职业学院; 汽车测控与安全四川省重点实验室