摘要

研究河道洪水的准确预测问题。由于水文数据是河道过去某些较短时间段内获取的数据,不能完整包含河道特性,使得较短的水文数据中的预报因子较难提取。传统的预测方法是直接提取水文数据中的预报因子,不能保证预报因子的准确度而造成预测准确性不高。为此,提出数据挖掘技术应用在河道洪水预测中。对水文数据进行分组后根据模糊算法对数据进行优化,采用数据挖掘算法找到水文数据隐藏的深层规律,并据此提取出预报因子,避免直接从较短的水文数据中提取预报因子而不准确的问题,最终根据关联规则构建洪水预测模型,并输入预报因子和降水值完成洪水预测。实验表明,这种方法能够从较短水文数据中有效提取预报因子,准确完成河道的洪水预测。