摘要

针对水面无人艇目标检测类别多、尺寸小、形变大等难题,提出了基于多分支注意力改进的YOLOv5检测算法。首先提出了一种SAv2Attention模块,通过对通道的“复制-转换-合并”等处理,实现卷积层通道间与通道内特征融合,提升网络的局部感受野,然后将其嵌入到YOLOv5网络,最后在构建的真实海试数据集上进行了大量对比实验。结果表明,SAv2Attention可有效提升YOLOv5的检测精度,典型海面目标数据集上,mAP@0.5检测精度达到94.6%,mAP@0.5:0.95检测精度达到60.9%,相较于原生算法分别提高1.4%和3%,对小尺寸目标平均检测率APS提升4.3%,证明所提方法能有效提升无人艇对水面小目标的检测能力。

全文