摘要

提出了一种新的基于半直接视觉里程计的RGB-D SLAM(同步定位与地图创建)算法,同时利用直接法和传统特征点法的优势,结合鲁棒的后端优化和闭环检测,有效提高了算法在复杂环境中的定位和建图精度.在定位阶段,采用直接法估计相机的初始位姿,然后通过特征点匹配和最小化重投影误差进一步优化位姿,通过筛选地图点并优化位姿输出策略,使算法能够处理稀疏纹理、光照变化、移动物体等难题.算法具有全局重定位的能力.在后端优化阶段,提出了一种新的关键帧选取策略,同时保留直接法选取的局部关键帧和特征点法选取的全局关键帧,并行地维护2种关键帧,分别在滑动窗口和特征地图中对它们进行优化.算法通过对全局关键帧进行闭环检测和优化,提高SLAM的全局一致性.基于标准数据集和真实场景的实验结果表明,算法的性能在许多实际场景中优于主流的RGB-D SLAM算法,对纹理稀疏和有移动物体干扰的环境的鲁棒性较强.