基于One-Class SVM的青鳉鱼异常行为识别方法

作者:罗毅; 王伟*; 刘勇; 姜杰; 刘翠棉; 赵乐; 李歆琰; 李治国; 廖日红; 王艳; 王新春; 饶凯锋
来源:河北工业科技, 2022, 39(03): 230-236.

摘要

为了更准确地解析青鳉鱼在突发污染环境中的行为变化趋势,提出了一种基于One-Class SVM模型的青鳉鱼异常行为识别方法。以青鳉鱼的生理及行为特征作为观测指标,将采集到的暴露在不同类型和浓度特征污染物下的青鳉鱼行为强度信号作为经验数据,利用直方图统计和主成分分析(PCA)对行为强度数据进行降维,实现行为特征提取,基于One-Class SVM构建模型,并以五水合硫酸铜和三氯酚作为特征污染物进行暴露实验对算法进行验证。结果表明,One-Class SVM模型可以准确地识别正常行为和污染物暴露时发生的异常行为;对于有机污染物最快可在10 min内完成预警,重金属污染物可在1 h内完成预警,并且污染物浓度越高,模型的识别效果越好。识别方法可对水源突发性水质污染进行更有效的监测和预警,也可为水污染应急决策提供技术支撑。