摘要

针对目前汽车零部件制造行业采用人工目测法进行ABS齿圈出厂检测引起的效率低、速度慢等问题,该文提出一种ABS齿圈表面缺陷视觉检测方法。首先提取齿圈表面缺陷图像的几何特征、灰度特征和纹理特征,构建特征向量,运用主成分分析法对测试样本特征数据进行降维处理,获得新的主成分,再利用自适应粒子群算法对SVM模型的关键参数进行优化,最后采用多项式核函数的SVM模型作为最佳分类模型对968型号的ABS齿圈进行检测实验,并与BP神经元网络模型检测结果进行对比。实验结果表明,采用多项式核函数的SVM齿圈表面缺陷检测模型实验效果最佳,检测正确准确率高达99.4%。