摘要

目的肝肿瘤分类计算机辅助诊断技术在临床医学中具有重要意义,但样本缺乏、标注成本高及肝脏图像的敏感性等原因,限制了深度学习的分类潜能,使得肝肿瘤分类依然是医学图像处理领域中具有挑战性的任务。针对上述问题,本文提出了一种结合特征重用和注意力机制的肝肿瘤自动分类方法。方法利用特征重用模块对计算机断层扫描(computed tomography,CT)图像进行伪自然图像的预处理,复制经Hounsfield处理后的原通道信息,并通过数据增强扩充现有数据;引入基于注意力机制的特征提取模块,从全局和局部两个方面分别对原始数据进行加权处理,充分挖掘现有样本的高维语义特征;通过迁移学习的训练策略训练提出的网络模型,并使用Softmax分类器实现肝肿瘤的精准分类。结果在120个病人的514幅CT扫描切片上进行了综合实验。与基准方法相比,本文方法平均分类准确率为87.78%,提高了9.73%;与肝肿瘤分类算法相比,本文算法针对转移性肝腺癌、血管瘤、肝细胞癌及正常肝组织的分类召回率分别达到79.47%、79.67%、85.73%和98.31%;与主流分类模型相比,本文模型在多种评价指标中均表现优异,平均准确率、召回率、精确率、F1-score及AUC(area under ROC curve)分别为87.78%、84.43%、84.59%、84.44%和97.50%。消融实验表明了本文设计的有效性。结论本文方法能提高肝脏肿瘤的分类结果,可为临床诊断提供依据。