摘要
为提高无人驾驶车辆路径跟踪精度和稳定性,提出一种基于粒子群优化(Particle Swarm Optimization, PSO)和高斯过程回归(Gaussian Process Regression, GPR)的模型预测控制(Model Predictive Control, MPC)参数自适应方法(PSO-MPC).使用PSO离线优化MPC参数,利用GPR生成最优参数曲面,可在各种工况下提高无人驾驶车辆路径跟踪的性能.仿真结果表明,改进的MPC方法在整个路径跟踪过程中能保持车辆稳定性,同时实现良好的路径跟踪精度.最后,在真实的无人驾驶车辆上验证了改进的MPC方法的有效性.
- 单位