摘要
针对主成分分析(PCA)未充分利用样本类别信息及线性鉴别(LDA)在小样本时识别率低的问题,提出了一种基于PCA和LDA相融合的人脸识别算法。该算法首先将输入人脸图像进行几何位置规范化和灰度分布均衡化预处理;然后利用PCA算法将人脸训练图像投影到低秩特征子空间,利用LDA算法计算类间离散度大、类内离散度小的特征子空间,从而获得PCA-LDA的人脸融合特征空间;最后将训练样本、测试样本投影至融合的特征空间,并利用最近邻准则实现对测试样本的识别。实验结果表明,该算法能够有效融合PCA和LDA的优势,提高系统识别的鲁棒性和效率。
- 单位