摘要

多标签分类算法已广泛应用于文本分类、图像识别、基因功能分类等领域,为了解决多标签分类算法较少考量标签之间的相关性等问题,提出一种基于标签相关性的多标签分类算法。首先对BP神经网络进行改进以适应多标签分类算法,然后对标签集分别使用皮尔逊相关系数和关联规则进行二阶、高阶相关性分析,最后将标签的相关性与改进的BP神经网络算法得到的概率做线性插值,得到样本属于某标签的最终概率。通过在4个真实数据集上利用5个多标签分类指标做对比实验,验证了提出的算法分类效果明显优于现有的多标签分类算法。