摘要

具有高检测率、低虚警率和高检测速度的单帧红外弱小目标检测是一项艰巨的任务,因为目标通常很小且暗淡,并且存在不同类型的干扰,例如高亮背景,复杂的背景边缘和高亮度像素级的噪声点(PNHB)。基于HVS的单帧检测算法通常可以实现比传统算法更好的性能,但是,对于基于HVS的算法,如何定义局部对比度的公式是关键问题之一,直接决定算法的性能。到目前为止,研究人员尚未就如何定义局部对比度达成共识,并且已经提出了许多局部对比度定义。现有算法如比值型和差值型的局部对比度算法,不能有效增强真实目标的同时抑制所有干扰,仅以周围区域为背景,而没有考虑周围背景本身的多样性,这些算法浪费了可用于进一步抑制复杂背景的局部多样性信息。提出了一种多尺度比差联合局部对比度检测算法(MRDLCM)。它可以结合比值型和差值型算法的优点,因此可以抑制所有类型干扰的同时增强不同大小的真实目标,且不需要任何预处理。此外,提出了基于反向局部多样性(RLD)的权重函数,该函数利用局部周围区域的局部多样性进一步抑制复杂背景。实验结果表明,所提出的MRDLCM_RLD算法相对于现有算法在检测率和误报率上具有有效性和鲁棒性。此外,该算法具有并行处理能力,对于提高检测速度非常有效。

  • 单位
    周口师范学院