摘要

针对目前多数改进蚁群算法求解多约束服务质量路由(Qo SR)存在收敛速度慢、易陷入局部最优从而效率不高的问题,提出一种引入梯度下降的蚁群算法(ACAGD)。该算法将梯度下降法引入到蚁群的局部搜索中,结合残余信息素,综合决定蚂蚁的下一跳选择策略。蚁群不仅以一定概率按照信息素浓度搜索下一跳,还将以一定概率按照梯度下降法搜索下一跳,从而降低传统蚁群算法容易陷入局部最优的可能性。利用Waxman网络模型随机生成不同路由节点数量的网络拓扑进行仿真实验。实验结果表明,ACAGD相比其他改进蚁群算法,能够在收敛速度不受影响的情况下,取得综合代价相对较低的路由,且算法的稳定性较好。