LDA是生成式概率模型,从理论上说,具有其他模型无可比拟的建模优点;SVM分类算法在文本分类上具有独特的优异性能,本文将前者良好的文本表示性能、降维效果与后者强大的分类能力结合起来。实验表明,该方法克服了传统选择方法带来的分类性能受损问题,并且能够在降低数据维度的条件下提高分类的正确率。