摘要

文本表示需要解决文本词语的歧义性问题,并能够准确界定词语在特定上下文语境中的语义特征。针对词语的多义性及语境特征问题,提出了一种文本语义消歧的SCDVAB模型。其基于分区平均技术,将场景语料库转换为文档嵌入,并引入各向异性,改进了软聚类的稀疏复合文档向量(SCDV)算法,以提高BERT的语境化表示能力;将调整各向异性后的BERT词语嵌入,作为静态词语向量的文档嵌入,以提升文本语义消歧的能力。通过大量实验进一步证明,SCDVAB模型的效果明显优于传统的文本消歧算法,可有效提高文本语义消歧的综合性能。

  • 单位
    南京审计大学

全文