摘要
脑电图(EEG)分析已被广泛应用于疾病的诊断,针对癫痫患者的脑电检测可及时对患者的发病情况作出判断,具有很强的实用价值,因此急需癫痫脑电自动检测、诊断分类技术。为实现患者正常期、癫痫发作间期和发作期各时段脑电的快速、高精度自动检测分类,本文提出一种基于样本熵(SampEn)与小波包能量特征提取结合纠错编码(ECOC)Real AdaBoost算法的脑电自动分类识别方法。将输入信号的样本熵值和4层小波包分解后的部分频段能量作为特征,并用纠错编码和Real AdaBoost算法相结合的方式对其进行分类。本文采用德国波恩大学癫痫数据库实验数据(含正常人清醒、睁眼与清醒、闭眼,癫痫患者间歇期致痫灶外与...
- 单位