摘要
针对受非零均值高斯噪声干扰的双率Hammerstein输出误差系统,提出一种基于偏差补偿的递推最小二乘(Bias Compensation based Recursive Least Squares, BCRLS)辨识算法。首先,利用多项式变换技术将目标系统转换为可直接采用双率采样数据进行辨识的模型,并利用递推最小二乘(RLS)算法进行辨识。其次,为了对RLS算法给出的有偏参数估计进行有效补偿,在偏差补偿原理的基础上,通过引入非奇异矩阵和扩展信息向量求解偏差项中的参数,推导得到BCRLS辨识算法。最后,通过数值仿真实验表明,BCRLS算法能够获得双率Hammerstein输出误差系统的无偏参数估计;且具有较强的鲁棒性,其辨识精度不容易受到噪声均值和方差变化的影响。
-
单位江南大学; 无锡爱德旺斯科技有限公司