摘要
目的 为减少ZB47包装机小包拉线缺陷投诉,基于无监督深度神经网络构建一种小包拉线缺陷视觉智能检测方法。方法 首先,在ZB47包装机CH转塔部位设计并加装小包图像采集装置,获得实时高清晰度小包图像。其次,将小包图像根据拉线位置进行固定位置的裁剪,从而减轻不同工况的环境背景影响并且加快检测速度。然后,构建自编码器–编码器结构的主干网络,同时叠加生成对抗网络中的判别器模块组成缺陷判别模型,并综合采用图像间、图像隐空间以及图像特征间的信息构建模型的损失函数。最后,使用裁剪后的正常小包拉线图像对构建的缺陷判别模型进行训练,并基于所有的正常小包图像得到异常阈值。结果 实际验证阶段,待检测图像的得分大于异常阈值即判断为异常图像,触发CH转塔部位的小包剔除装置将该缺陷小包剔除。生产现场测试表明,所提方法可以对典型小包缺陷进行快速准确检测,缺陷检测准确率为99.99%。结论 该方法能够满足生产现场卷烟小包拉线缺陷检测的准确性和实时性要求。
-
单位浙江中烟工业有限责任公司