摘要

针对专利文本采用层级细分类低层级文本间相似度高、文本特征难以区分的特性,提出了一种LSTM-A文本分类模型。该模型使用LSTM网络对输入序列进行编码,并引入注意力机制对不同作用的文本特征分配不同权重,最后使用incopat专利数据库的专利文本数据集进行方法的有效性验证。实验表明,该模型可以有效提升高相似度专利文本的分类准确率。