摘要
为解决目前方法不能有效对交通标志进行检测定位,定位交通标志效率低下,存在误检漏检的问题,提出基于卷积神经网络中层特征学习的交通标志图像识别。计算图像的显著度并输出感兴趣区域;提取底层图像特征,构建优化目标函数并训练视觉词典,使用PCA方法提取交通标志图像特征并与视觉词典进行卷积,通过空间金字塔池化提取多层次特征;使用SoftMax分类器进行分类。结果表明:该方法的召回率为96%,准确率为97%,取得良好效果,小标志的召回率为94.5%,准确率为95.5%,有利于远距离交通标志识别,标志的平均定位时间为0.006 s,实时性强。
- 单位