摘要
针对滚动轴承故障样本稀疏、卷积神经网络(convolutional neural network, CNN)池化层效率低的问题,提出一种基于胶囊网络的小样本学习方法模型。基于孪生神经网络,通过相同或者不同类别的样本对进行特征学习,根据特征之间的差异进行故障分类。在标准的凯斯西储大学(Case Western Reserve University, CWRU)轴承故障数据集进行的实验结果表明,该模型在有限数据样本下对故障诊断更为有效。通过添加不同幅值能量的高斯白噪声开展实验,其结果表明,所提方法在抗噪性方面具有优势。
- 单位