提出一种基于改进粒子群优化算法的离群点检测算法,解决高维环境下离群点挖掘效率偏低的问题.新算法能够充分发挥粒子群优化算法全局搜索的优势,并具有k均值算法快速收敛的特点,可避免粒子群优化算法的早熟,减小确定k均值算法聚类中心的计算量等问题.实验表明,该算法在高维环境下可快速有效的挖掘出离群数据的离群支持度,有较好的挖掘效率、准确率和实用性.