摘要

提取稳定且具有判别性的低维特征是模式识别研究中的关键问题。在深入研究Fisher判别准则的基础上,从因子分析的实际角度考虑,提出基于因子分析的判别准则,解决Fisher判别准则类内和类间散布矩阵非最优定义问题。通过在合成数据集和真实人脸数据集上进行实验比较表明,该方法在解决数据集中的边缘类和人脸的表情、姿态变化等问题上比Fisher判别准则更优。