文本后门攻击与防御综述

作者:郑明钰; 林政; 刘正宵; 付鹏; 王伟平
来源:计算机研究与发展, 2024, 61(01): 221-242.
DOI:10.7544/issn1000-1239.202220340

摘要

深度神经网络的安全性和鲁棒性是深度学习领域的研究热点.以往工作主要从对抗攻击角度揭示神经网络的脆弱性,即通过构建对抗样本来破坏模型性能并探究如何进行防御.但随着预训练模型的广泛应用,出现了一种针对神经网络尤其是预训练模型的新型攻击方式——后门攻击.后门攻击向神经网络注入隐藏的后门,使其在处理包含触发器(攻击者预先定义的图案或文本等)的带毒样本时会产生攻击者指定的输出.目前文本领域已有大量对抗攻击与防御的研究,但对后门攻击与防御的研究尚不充分,缺乏系统性的综述.全面介绍文本领域后门攻击和防御技术.首先,介绍文本领域后门攻击基本流程,并从不同角度对文本领域后门攻击和防御方法进行分类,介绍代表性工作并分析其优缺点;之后,列举常用数据集以及评价指标,将后门攻击与对抗攻击、数据投毒2种相关安全威胁进行比较;最后,讨论文本领域后门攻击和防御面临的挑战,展望该新兴领域的未来研究方向.

全文