摘要

针对差分进化算法常见的早熟收敛、搜索停滞和求解精度低的问题,研究一种精英化岛屿种群的差分进化算法(EIDE)。为了实现全局搜索与局部搜索能力并重,EIDE划分多个岛屿种群,根据迭代时的适应度情况,动态地将岛屿种群分类为精英岛屿和普通岛屿;针对精英岛屿,提出一种控制参数自适应方法,依据岛屿适应度情况,自适应地调整变异概率与交叉概率,同时算法利用增强局部搜索的变异策略,提高收敛速度与精度;针对普通岛屿,使用适合全局搜索的变异与交叉概率及变异策略,维护种群多样性。EIDE提出了一种可控的"移民"与"个体迁移"策略,控制优质基因流动,有效避免早熟收敛与搜索停滞问题。在9个benchmark函数上的测试结果表明,新算法具有较强的全局寻优能力与稳定性,且收敛速度较快。

  • 单位
    国家高性能计算机工程技术中心同济分中心; 同济大学