摘要

小样本学习指只利用目标类别的少量监督信息来训练机器学习模型。由于其实用价值,学术界和工业界提出很多针对该问题的解决方案,但是目前国内缺少该问题的综述。本文对国内外学者提出的小样本学习算法及基于小样本学习的目标检测算法进行了系统的总结和探索。首先,给出了小样本学习的问题定义,列举其与其他一些经典的机器学习问题之间的联系,同时从理论上阐述小样本学习问题面临的挑战;接着,对基于小样本学习的图像分类进行了概述,并对其中代表性的工作进行介绍与分析;在此基础上,重点针对基于小样本学习的目标检测,特别是零样本条件下的目标检测问题,详细介绍和分析了现有的研究工作;最后,立足于现有方法的优缺点,从问题设定、理论研究、实现技术以及应用场景等几个方面对小样本学习的未来发展进行了展望,期望为该领域后续的研究工作提供启示。