摘要
针对运动想象脑电信号处理中分类准确率较低的问题,提出了一种基于能量(二阶矩)小波包变换和莱文伯格-马夸特神经网络算法相结合的运动想象脑电信号处理方法.首先,利用能量方法对信号进行时域分析,选取有效的时序段;然后,使用小波包变换对所选有效时域段的各导信号进行时频分解,选取与想象任务相关的频段信息重构脑电信号特征;最后,将各导信号重构的特征串接,导入基于莱文伯格-马夸特训练算法的神经网络实现最终的任务分类.利用2个脑电信号标准竞赛数据库进行方法验证,分别取得了95.62%和90.13%的分类准确率.与近期的一些研究成果进行对比,可知该方法具有较好的分类效果.
-
单位北京邮电大学; 自动化学院; 北京航天测控技术有限公司