为了克服Girvan-Newman算法运行效率的不足,提出了一个基于modularity极值近似的社团发现算法MEA。该算法采用modularity增量作为社团结构的度量,使用贪心策略获得最优社团分划的近似解。通过理论分析,并在实际的数据集上进行实验验证,结果表明MEA算法是快速、有效的。