摘要

厘清菌群群落与环境的相互关系及其潜在的驱动机理是肠道微生物研究的一项关键任务。通过微生物组高通量测序和大数据分析辨识微生物组分及功能是目前微生物群落分析的主要方法。现有人体肠道微生物的研究主要侧重于描述肠道菌群多样性和组成特征,缺少更深层次的菌群内部互利共生关系及其生态演替的探索。如何由微生物组数据从分子网络角度来研究肠道菌群分布的关联模式是目前亟待解决的问题。该文使用机器学习领域的网络嵌入方法改进传统生物网络结构学习技术过于依赖节点间的个体相关关系的弊端,更准确地捕捉微生物网络关联的异构性、隐变量和不均衡性等特征。通过对生成的模块与环境变量以及关键代谢物的进行相关性分析,证实了新的网络模块挖掘方法可以更好地提取肠道菌群结构中之前较少被认识到的特征模块,从而更好地评估菌群与菌群之间、菌群与环境之间的制约关系以及菌群代谢功能之间的潜在耦合机制。该研究中描述的方法不仅给肠道微生物群落结构的解析提供了新视角,还可以拓展应用到其他环境微生物领域的研究,通过数据的多阶信息更好地反映群落结构的驱动过程。

全文