摘要
花岗岩是地球区别于太阳系其他行星的重要特征,研究花岗岩的演化对于理解现今地球大陆地壳的形成有重要意义.结晶分异是岩浆演化的主要机制之一.然而,由于花岗质岩浆黏度高,为非牛顿流体,结晶分异在酸性岩浆中有效与否仍有争议.本文侧重物理分析方法,以此审视花岗质岩浆在非运移过程——在岩浆房中及岩浆就位后的结晶分异作用.通过物理计算及分析,我们认为,花岗质岩浆高黏度的特性使得一般的矿物颗粒在岩浆房中受阻沉降速度极小(10-910-7m s-1),因而在存在岩浆对流时,颗粒的堆晶过程将受到影响,岩浆成分趋于均一;当岩浆房演化至晶粥状态(结晶度F>4050%)后,岩浆对流基本停止,此时粒间熔体可通过颗粒的受阻沉降及压实作用挤出,汇聚成高硅熔体层.高硅熔体层可进一步形成高硅花岗岩、流纹岩.在岩浆房演化至不同程度时,晶粥体多期次的活化及岩浆的上侵可能形成成分变化的复式岩体.此外,以华南富锂氟花岗岩为代表的特殊花岗岩类,相对于一般花岗质岩浆具有更低的黏度和固相线,可能以结晶分异作用产生矿物组合及成分上的垂向分带.而侵入体中小尺度的成分变化结构不是重力分异的结果,流动分异或许起着关键作用.综合来说,花岗质岩浆能够发生结晶分异;高分异特征的高硅花岗岩及火山岩可能是酸性岩浆结晶分异的产物,而花岗岩可能是结晶分异形成的堆晶.
- 单位