摘要
深度强化学习在学习过程中需要与环境进行大量的交互,训练效率低下。模仿学习通过从专家示范中学习,可以有效地应对这一挑战,但是需要收集大量的专家示范轨迹,在复杂任务中往往导致高昂的示范代价。本文提出一种基于主动学习的行为克隆算法,通过主动挑选示范起始状态来减小示范代价。该方法基于不确定性采样和不相似性采样两种策略,从状态候选集中挑选最有价值的状态作为起始状态,然后向专家查询固定长度的示范轨迹,希望从尽可能少的示范中学习出有效策略。在多个不同任务上的实验表明,本文方法可以用更少的示范轨迹进行行为克隆,降低了强化学习中的专家示范代价。
- 单位