摘要

针对现有连续性缺失补全方法的不足,建立了一种多视图深度融合的连续性缺失补全方法。该方法采用反转距离加权插值、双向简单指数平滑、用户协同过滤、能量扩散协同过滤及文本嵌套的方法,分别得到时空和语义缺失数据补全中间结果;构造了神经网络模型融合跨时空和语义视图中的互补异构信息,完成连续性缺失补全。实验表明,该方法补全连续性缺失不但效率高,而且比时空多视图补全在平均绝对误差与平均相对误差上分别降低7%和22%,具备普适性且适用于相关时空连续性缺失序列补全领域。

全文