摘要
提出利用卷积神经网络(CNN)预测英文单词情感极性,并利用英文单词情感极性设计量化篇章情感倾向的方法.首先,利用fastText技术训练词嵌入模型,将英文单词转化为定长、稠密的词向量;接着,以词向量作为输入,构造一维CNN模型,并设计出多种具有不同深度的架构;最后,利用CNN预测模型计算篇章中所含英文单词的平均情感极性作为篇章情感倾向的量化分值.实验结果表明:相比于传统的机器学习模型,提出的CNN预测模型能够提升英文单词情感预测精度,所设计的篇章情感量化方法,也与主观判决情感色彩有较好的一致性.
-
单位信阳师范学院; 信阳农林学院