摘要
目的是解决小型分布式光伏电站在无气象站配备、无法测量气象变量(即太阳辐照度、温度、相对湿度等)的情况下,通过区域内光伏电站历史出力数据预测光伏发电的问题。基于有限信息,提出了两层的LSTM深度学习模型,对小型分布式光伏电站功率进行了预测,并对其超参数对其预测效果的影响进行了分析。此外,利用澳大利亚爱丽丝泉地区的分布式光伏电站数据来验证该模型的准确性,并与使用气象数据进行预测模型的效果进行了对比。结果表明,借助区域内光伏电站历史功率数据进行预测的效果良好,适用于无气象站情景下的光伏功率预测。
- 单位