摘要

Frozen soil is generally regarded as a strongly rheological geomaterial. The strength attenuation of frozen soil is an important inducement for disease and instability in subgrade engineering, pile engineering and artificial freezing construction. Few efforts have been made to investigate the attenuation characteristics of strength envelope surface for frozen soil under complex stress states experimentally and theoretically. Considering this, at a temperature of -6 ℃, a series of triaxial stress relaxation tests under various confining pressures were carried out on the frozen subgrade soil specimens at strength points. The degeneration of strength parameters and stress attenuation process of frozen soil under complex stress states were systematically studied. The degradation law and mechanism of cohesion and internal friction angle are synchronously revealed in the stress relaxation process. Testing results indicate that the stress relaxation process of compacted frozen soil is significantly influenced by confining pressure. The stress relaxation ratio is increasing linearly with the rise of confining pressure if the confining pressure is beyond 1. 5 MPa. The anti-relaxation ability of frozen soil is greatly reduced during high confining pressure conditions:the stress relaxation ratio of frozen soil is only 41. 94% under 1. 5 MPa, but exceeds 90. 30% under 16 MPa. The strength of frozen soil attenuates linearly with time in the semi-logarithmic coordinate system. When the confining pressure is higher than 1. 5 MPa, the strength attenuation rate of frozen soil increases with the rise of confining pressure. As the development of stress relaxation of frozen soil, cohesion decreases linearly but internal friction angle increases linearly with time in the semi-logarithmic coordinate system. It manifested that the cementation in frozen soil shows evident rheological features and it is a key inducement for strength attenuation. Moreover, the attenuation law and value of cohesion in frozen soil which is measured by triaxial stress relaxation test are similar to the spherical template indenter test results. This may provide a new test method for obtaining the long-term strength and cohesion of frozen soil. On the basis of test results, the stress states of frozen soil in all stress relaxation curves at 12 relaxation durations were captured, and the rate-dependent variation characteristics of strength envelope in p-q stress space were analyzed in detail. Under high confining pressures, the strength envelope of frozen soil shows different geometric features as time goes on. In addition to the decline of level, the strength surface exhibits clockwise rotation with time, and the third stage sharply decreases at first and then becomes flat. Based on the analysis of characteristics of experimental strength surface and evolution law of strength parameters during the stress relaxation process, a rate-dependent strength theory for frozen soil considering the stress relaxation effect is established in this paper.

全文