摘要

降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的感受野.雨痕信息可以认为是多个雨层特征的叠加,为了更好地提取雨痕的特征和恢复背景图层信息,运用了通道和空间注意力机制的残差网络.通道注意力能够反映不同雨层的权重,而空间注意力则通过相邻空间特征之间的关系增强区域的表征.随着网络的加深,防止低层信息的丢失,采用级联的残差网络和长短时间记忆网络,将低层特征信息传递到高层中去,逐阶段地去除雨痕.在网络的输出部分,采用集成学习的方式,将每个阶段的输出结果通过门控网络加权相加,得到最终的无雨图像.实验结果表明,去雨和恢复纹理细节的效果都得到较大提升.

全文