针对工业大数据相似性搜索的效率和准确率不高的问题,提出了一种融合Informer和深度哈希算法的时序数据相似性搜索方法。首先,基于Informer搭建深度哈希数据特征提取模型;然后,通过贪婪哈希函数和层归一化构建深度哈希函数,通过对损失函数进行优化提高深度哈希算法的性能;最后,对M树(M-tree)进行改进,提高时序数据相似性搜索的效率。基于不同数据集的实验结果表明,该方法在保证较高准确性的前提下,可以有效提高时序数据相似性搜索的速度。