摘要

采用加强特征提取网络为MobileNetV2的融合多特征金字塔场景解析网络(PSPnet)来实现复杂场景下的图像语义分割.相对于深度残差网络ResNet50和MobileNetV1,引入了线性瓶颈结构和反向残差结构,利用金字塔池化模块(PPM)来处理不同层级的图像特征信息,并将其进行特征拼接,有效避免了不同分割尺寸下,子区域之间关键特征信息的缺失.在此基础上,引入注意力机制模块,结合通道注意力机制(CAM)和空间注意力机制(SAM),进一步提高分割精度.实验结果表明:该方法可以提高图像识别的准确率,并节省训练时间.