摘要
【目的】高精度的长期径流预报是水利工程运行的重要基础支撑,然而影响径流预报精度的预报因子选择、模型构建、径流分解中决定性因素不明,阻碍了预报精度的提升。【方法】基于信息熵筛选天文、全球和流域尺度预报因子,分别构建多元线性回归、神经网络、随机森林模型,结合STL算法分解径流,形成多种预报方案,量化预报因子、模型及径流分解三个因素对长期径流预报的贡献。【结果】在英那河、碧流河及桓仁水库的实例研究中,以气候因子、天文因子与流域因子组合(C+A+W)为输入,在对年径流进行分解的前提下利用随机森林模型进行预报,测试集的纳什效率系数分别为0.92、0.84、0.84。在影响因素分析中,预报因子对英那河、碧流河及桓仁水库年径流预报的精度贡献占比分别为0.30、0.30、0.27。【结论】对于三个水库,均是包含三个尺度的预报因子预报精度最高,随机森林模型表现最优,径流分解能一定程度提升预报精度。预报因子的选择是精度的主要影响因素;另外,与预报因子有关的因素之间的相互作用也不容忽视。本文可为长期预报方案的制订和精度提升提供新思路。
-
单位中国电建集团贵阳勘测设计研究院有限公司; 大连理工大学