摘要

该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体位置的迭代更新,求得连接权值和阈值的最优初始值;通过多次调整深度前馈神经网络模型的超参数,使网络拟合效果趋于最优,最终确定转移函数。为验证方法的有效性,分别从烟叶近红外光谱谱图、主成分投影和预测结果的角度,将SSA-DFN方法与分段直接校正算法(PDS)、典型相关性分析算法(CCA)转移前后的效果进行了对比。结果表明SSA-DFN方法转移后的从机光谱与原主机光谱重合度最高,转移后主、从机总糖、烟碱含量的预测结果差异不显著,预测平均误差从8.32%、9.15%分别降至4.65%、4.82%,预测均方根误差(RMSEP)和决定系数(R2)等指标均优于PDS和CCA,取得了最佳的转移效果,可满足企业需求。结果表明该方法是一种有效的模型转移方法。

全文