摘要
针对传统侧扫声纳图像沉船目标识别精度低的问题,引入深度学习,提出了一种改进的You Only Look Once X(YOLOX)目标检测方法。首先对收集的侧扫声纳沉船图像进行预处理,根据实测过程拖鱼的姿态、仪器设备不同等造成的成像差异进行数据增强与扩充,并构建数据集;其次以YOLOX为基础网络,根据侧扫声纳图像缺少丰富特征信息的问题,对网络进行改进,在网络的Spatial pyramid pooling(SPP)结构引入Softpool池化替换原来的池化,提取更多的细节特征信息;最后对改进前后的网络模型进行精度评估,验证改进网络的可行性。实验结果表明,改进后的网络在平均精确率均值(mAP)等精度评定指标中相较于原网络都有着显著提升,识别效果更好。该研究可为侧扫声纳探测中实时目标物检测提供研究基础。
- 单位