摘要

砂土液化是一种危害性比较大的自然灾害,对砂土液化进行判定预测在地质灾害防治领域中有重要的研究意义。通过粗糙集理论(Rough Set,RS)对影响砂土液化的6个初始评价指标(包括震级、土深、震中距、地下水位、标贯击数和地震持续时间)进行属性约简,去掉冗余或干扰信息,得到基于4个核心预测指标的数据集。通过主成分分析法(Principal Component Analysis,PCA)从核心评价指标中提取出主成分,采用支持向量机(Support Vector Machine,SVM)对数据集进行训练,用遗传算法(Genetic Algorithm,GA)优化参数,建立砂土液化的RS-PCA-GA-SVM预测模型。并结合砂土液化实际数据将预测结果与基于Levenberg-Marquardt算法改进的BP神经网络模型(LM-BP)的预测结果做比较。实例计算表明:基于RS-PCA-GA-SVM模型得到的砂土液化预测结果精度较LM-BP神经网络有很大的提高,判别结果与实际情况比较吻合,可在实际工程中应用。