摘要
为解决变电站中自动化监控仪表读数的问题,提出基于机器学习和图像处理算法的指针式仪表自动读数方法,由仪表检测和指针识别两个阶段组成。使用全卷积网络(fully convolutional networks,FCN)对输入图像进行语义分割,以检测仪表的位置并提取仪表部分的图像。利用直方图均衡化、中值滤波和双边滤波减小光照和阴影对指针识别的干扰,并利用仿射变换矫正拍摄时的倾斜,再结合改进的霍夫变换识别仪表中指针的位置,从而计算指针角度获取读数。结果表明,对于自然场景中变电站中的指针式仪表,本研究能很好地检测出仪表并识别出指针的读数,对于光照和阴影等干扰具有良好的鲁棒性,可以显著减少变电站巡检人员的工作量,提高工作效率。
- 单位