摘要
针对人脸表情识别背景复杂导致识别率低的缺点,提出了一种中心对称三值模式(CSTP)算法,首先对人脸表情图像进行分块处理,在每一子块上提取CSTP特征,并对该子块进行CSTP特征的直方图统计,然后求出各个子块对应的信息熵,构造自适应加权系数,再分别和各个子块的直方图相乘,将自适应加权后的各个子块特征向量级联作为最终的纹理特征,最后利用支持向量机(SVM)进行表情分类.在JAFFE和CMU-AMP表情库上进行试验,通过对比其他传统方法发现该算法对表情识别更有效.
-
单位电子信息工程学院; 河北工业大学