摘要

受耦合效应和其他诸多因素的影响,野外实际采集的分布式光纤声波传感(Distributed Fiber-optic Acoustic Sensing, DAS)数据的信噪比通常较低.因此,在后续处理之前,需要首先对DAS数据进行去噪处理.传统的基于人工智能监督学习的去噪方法能够对DAS数据中的噪声进行压制,但它需要大量含噪声和无噪声数据进行成组标记,人工标记工作量巨大.为此,本文提出了基于自监督学习孪生网络的DAS地震数据去噪方法.该方法基于自监督学习中的孪生网络结构,采用U-Net网络建立深度学习框架.所提框架通过对输入的含噪声数据进行数据自我特征学习,迭代获取去噪目标函数的最优解,从而实现自监督高精度深度学习去噪网络构建.合成数据和实际资料处理结果表明,本文方法可以有效抑制人工震源DAS采集数据中的随机噪声,显著提高去噪结果的信噪比和同相轴的连续性.此外,本文方法能够避免常规监督学习方法需要进行数据标记的人工工作量,有效提高实际地震数据去噪处理效率.